Thermal sensors: use and application in monitoring/detecting Australian wildlife.

Peter Adams

Environmental and Conservation Sciences, Murdoch University, South Street,
Murdoch WA

Thermal sensors

- Device that detects temperature/heat
- Thermal sensors ≠ night vision
- Night vision utilises image or low light

intensification

Thermal sensors

- Heat transfer occurs via 3 ways;
 - Convection
 - Conduction
 - IR radiation
- Thermal sensors detect infrared radiation
- Enables sensing and detection of IR emitting objects

Infrared radiation

Why use thermal sensors?

Electromagnetic (light) spectrum is wide

Philip Ronan, Wikipedia

- Visible light spectrum relatively narrow in comparison
- Anything above 5 Kelvin emits IR radiation

Emissivity coefficient - ε

• Proportion of infrared radiation emitted from a 'grey body' compared to an ideal 'black body' ($\varepsilon = 1$) [Stefan-Boltzmann Law]

Material	ε
Aluminium foil	0.04
Cement	0.54
Paint	0.96
Plastics	0.90 - 0.97
Soil	0.90 - 0.95

• For most biologicals, $\varepsilon = 0.95 - 0.98$

Advantages

Automated sensor(s) can remove human

'inaccuracies'

Visual acuity

Memory

Concentration

Overcome crypsis

Advantages

Visual Acuity

Limitations

- Sensitivity and accuracy highly dependent upon several factors;
 - Sensor
 - Sensitivity
 - Resolution
 - Target species/object
 - Environment

Sensors

- Sensitivity
 - Ability to detect variations in infrared radiation
 - ↑sensitivity requires active cooling of sensor
- Resolution
 - Increased pixels = improved visual image
 - Improved outline and identification
- Important for accurate detection or identification of target

Target species/object

- Physiology
 - $-\Delta T$ surface temperature and environment
- Size
 - Large animals = bigger target
- Behaviour

Environment

Does not penetrate vegetation or other visual barriers

Background temperature

Thermal 'noise'

Hand-held sensors

- FLIR E series
 - 160 x 120 pixels
 - AU\$7,000 \$10,000

- FLIR T400 series
 - 320 x 240 pixels
 - AU\$20,000 \$30,000

Mounted sensors

- FLIR Axx series
 - 640 x 512 pixels
 - AU\$20,000 \$40,000

- FLIR SC7000 series
 - Internal cooling
 - AU\$200,000+

Summary

- Increase detectability of target species
 - Dependent upon physiological and environmental attributes
- Need to be aware of the limitations
- Real-time and post-data collection analysis
- Aerial and ground based applications
- Expensive

Acknowledgements

- DPaW
 - Vertebrate pest control project
- DAFWA
 - Boosting Biosecurity Defences project, supported by Royalties for Regions

Questions?